Search results for "cellular function"
showing 10 items of 15 documents
To move or not to move: roles and specificity of plant RNA mobility
2020
Intercellular communication in plants coordinates cellular functions during growth and development, and in response to environmental cues. RNAs figure prominently among the mobile signaling molecules used. Many hundreds of RNA species move over short and long distances, and can be mutually exchanged in biotic interactions. Understanding the specificity determinants of RNA mobility and the physiological relevance of this phenomenon are areas of active research. Here, we highlight the recent progress in our knowledge of small RNA and messenger RNA movement. Particular emphasis is given to novel insight into the specificity determinants of messenger RNA mobility, the role of small RNA movement…
Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport
2018
The influence of nutrition has the potential to substantially affect physical function and body metabolism. Particular attention has been focused on omega-3 polyunsaturated fatty acids (n-3 PUFAs), which can be found both in terrestrial features and in the marine world. They are responsible for numerous cellular functions, such as signaling, cell membrane fluidity, and structural maintenance. They also regulate the nervous system, blood pressure, hematic clotting, glucose tolerance, and inflammatory processes, which may be useful in all inflammatory conditions. Animal models and cell-based models show that n-3 PUFAs can influence skeletal muscle metabolism. Furthermore, recent human studies…
Overview of the interaction of helminth extracellular vesicles with the host and their potential functions and biological applications.
2021
Helminth Extracellular Vesicles (EVs) have emerged as important mediators in host-parasite communications, participating in the parasite survival and its pathogenic effects. In the last decade, a growing amount of information reporting the isolation and characterization of EVs from different helminth species has appeared, but unfortunately, few reports have focused on functional studies of helminth EVs in different cell lines, organoids or animal models. We here review these in vitro and in vivo studies, which clearly demonstrate that helminths secrete EVs, which affect their environment. Helminth EVs are actively internalized by different cell lines, modulating cellular functions important…
Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024.
2016
Background The filamentous actinomycete Microbispora ATCC-PTA-5024 produces the lantibiotic NAI-107, which is an antibiotic peptide effective against multidrug-resistant Gram-positive bacteria. In actinomycetes, antibiotic production is often associated with a physiological differentiation program controlled by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two-dimensional difference in gel electrophoresis, mass spectrometry and gene ontology approaches. R…
Study of the role of BCL-XL in healthy aging and frailty prevention
2022
Aging is defined as an intrinsic, progressive, deleterious and inevitable multifactorial phenomenon that occurs as a result of the gradual accumulation of damage at cellular and molecular levels. Due to the recent discovery of BCL-XL being overexpressed in peripheral blood mononuclear cells from centenarians, a new approach has emerged to investigate the BCL-XL function in healthy aging. The major goal of this thesis is to study the role of BCL-XL in frailty and healthy aging in transgenic mice overexpressing a human form of BCL-XL in T cells. For this, we used the heterozygous transgenic mice from Cg-Tg(LCKprBCL2L1)12Sjk/J strain, which express the human BCL-XL cDNA sequence in all thymocy…
Protein Interaction Networks and Disease: Highlights of the 3rd Challenges in Computational Biology Meeting
2017
Cellular functions are managed by a complex network of protein interactions, the malfunction of which may derive in disease phenotypes. In spite of the incompleteness and noise present in our current protein interaction maps, computational biologists are making strenuous efforts to extract knowledge from these intricate networks and, through their integration with other types of biological data, expedite the development of novel and more effective treatments against human disorders. The 3rd Challenges in Computational Biology meeting revolved around the Protein Interaction Networks and Disease subject, bringing expert network biologists to the city of Mainz, Germany to debate the current st…
A reliable and unbiased human protein network with the disparity filter
2017
AbstractThe living cell operates thanks to an intricate network of protein interactions. Proteins activate, transport, degrade, stabilise and participate in the production of other proteins. As a result, a reliable and systematically generated protein wiring diagram is crucial for a deeper understanding of cellular functions. Unfortunately, current human protein networks are noisy and incomplete. Also, they suffer from both study and technical biases: heavily studied proteins (e.g. those of pharmaceutical interest) are known to be involved in more interactions than proteins described in only a few publications. Here, we use the experimental evidence supporting the interaction between protei…
Frontiers of metal-coordinating drug design
2020
INTRODUCTION: The occurrence of metal ions in biomolecules is required to exert vital cellular functions. Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The use of both drug types exploiting metal–ligand interactions is well established to treat distinct pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challenging, part of medicinal chemistry. AREA COVERED: Atomic-level simulations are increasingly employed to overcome the challenges met by traditional drug-discovery approaches and to compleme…
Subcellular fractionation of tissue culture cells.
2003
Cell fractionation techniques include some of the most important and widely used analytical tools in cell and molecular biology, and are essential for the development of cell-free assays that reconstitute complicated cellular processes. In addition to simple gradient systems, this unit discusses the immuno-purification of organelles, in particular endosomes. As antigens, purification can be achieved using endogenous or ectopically expressed proteins, provided that appropriate antibodies are available. Alternatively, tagged proteins can be used, when combined with anti-tag antibodies. Now that sequencing of the genomes of several organisms has been completed, biochemical strategies, and in p…
Computing Metal-Binding Proteins for Therapeutic Benefit
2021
Over one third of biomolecules rely on metal ions to exert their cellular functions. Metal ions can play a structural role by stabilizing the structure of biomolecules, a functional role by promoting a wide variety of biochemical reactions, and a regulatory role by acting as messengers upon binding to proteins regulating cellular metal-homeostasis. These diverse roles in biology ascribe critical implications to metal-binding proteins in the onset of many diseases. Hence, it is of utmost importance to exhaustively unlock the different mechanistic facets of metal-binding proteins and to harness this knowledge to rationally devise novel therapeutic strategies to prevent or cure pathological st…